Visualizing (generalized) linear mixed effects models, part 2 #rstats #lme4

In the first part on visualizing (generalized) linear mixed effects models, I showed examples of the new functions in the sjPlot package to visualize fixed and random effects (estimates and odds ratios) of (g)lmer results. Meanwhile, I added further features to the functions, which I like to introduce here. This posting is based on the online manual of the sjPlot package.

In this posting, I’d like to give examples for diagnostic and probability plots of odds ratios. The latter examples, of course, only refer to the sjp.glmer function (generalized mixed models). To reproduce these examples, you need the version 1.59 (or higher) of the package, which can be found at GitHub. A submission to CRAN is planned for the next days…

Fitting example models

The following examples are based on two fitted mixed models:

# fit model
library(lme4)
# create binary response
sleepstudy$Reaction.dicho <- sju.dicho(sleepstudy$Reaction, 
                                       dichBy = "md")
# fit first model
fit <- glmer(Reaction.dicho ~ Days + (Days | Subject),
             sleepstudy,
             family = binomial("logit"))

data(efc)
# create binary response
efc$hi_qol <- sju.dicho(efc$quol_5)
# prepare group variable
efc$grp = as.factor(efc$e15relat)
levels(x = efc$grp) <- sji.getValueLabels(efc$e15relat)
# data frame for 2nd fitted model
mydf <- na.omit(data.frame(hi_qol = as.factor(efc$hi_qol),
                           sex = as.factor(efc$c161sex),
                           c12hour = as.numeric(efc$c12hour),
                           neg_c_7 = as.numeric(efc$neg_c_7),
                           grp = efc$grp))
# fit 2nd model
fit2 <- glmer(hi_qol ~ sex + c12hour + neg_c_7 + (1|grp),
              data = mydf,
              family = binomial("logit"))

Summary fit1

Formula: Reaction.dicho ~ Days + (Days | Subject)
   Data: sleepstudy

     AIC      BIC   logLik deviance df.resid 
   158.7    174.7    -74.4    148.7      175 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2406 -0.2726 -0.0198  0.2766  2.9705 

Random effects:
 Groups  Name        Variance Std.Dev. Corr 
 Subject (Intercept) 8.0287   2.8335        
         Days        0.2397   0.4896   -0.19
Number of obs: 180, groups:  Subject, 18

Fixed effects:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -3.8159     1.1728  -3.254 0.001139 ** 
Days          0.8908     0.2347   3.796 0.000147 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
     (Intr)
Days -0.694

Summary fit2

Formula: hi_qol ~ sex + c12hour + neg_c_7 + (1 | grp)
   Data: mydf

     AIC      BIC   logLik deviance df.resid 
  1065.3   1089.2   -527.6   1055.3      881 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.7460 -0.8139 -0.2688  0.7706  6.6464 

Random effects:
 Groups Name        Variance Std.Dev.
 grp    (Intercept) 0.08676  0.2945  
Number of obs: 886, groups:  grp, 8

Fixed effects:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.179036   0.333940   9.520  < 2e-16 ***
sex2        -0.545282   0.178974  -3.047  0.00231 ** 
c12hour     -0.005148   0.001720  -2.992  0.00277 ** 
neg_c_7     -0.219586   0.024108  -9.109  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
        (Intr) sex2   c12hor
sex2    -0.410              
c12hour -0.057 -0.048       
neg_c_7 -0.765 -0.009 -0.116

Diagnostic plots

Two new functions are added to both sjp.lmer and sjp.glmer, hence they apply to linear and generalized linear mixed models, fitted with the lme4 package. The examples only refer to the sjp.glmer function.

Currently, there are two type options to plot diagnostic plots: type = "fe.cor" to plot a correlation matrix between fixed effects and type = "re.qq" to plot a qq-plot of random effects.

Correlation matrix of fixed effects

To plot a correlation matrix of the fixed effects, use type = "fe.cor".

# plot fixed effects correlation matrix
sjp.glmer(fit2, type = "fe.cor")

unnamed-chunk-11-1

qq-plot of random effects

Another diagnostic plot is the qq-plot for random effects. Use type = "re.qq" to plot random against standard quantiles. The dots should be plotted along the line.

# plot qq-plot of random effects
sjp.glmer(fit, type = "re.qq")

unnamed-chunk-13-1

Probability curves of odds ratios

These plotting functions have been implemented to easier interprete odds ratios, especially for continuous covariates, by plotting the probabilities of predictors.

Probabilities of fixed effects

With type = "fe.pc" (or type = "fe.prob"), probability plots for each covariate can be plotted. These probabilties are based on the fixed effects intercept. One plot per covariate is plotted.

The model fit2 has one binary and two continuous covariates:

# plot probability curve of fixed effects
sjp.glmer(fit2, type = "fe.pc")

unnamed-chunk-9-1

Probabilities of fixed effects depending on grouping level (random intercept)

With type = "ri.pc" (or type = "ri.prob"), probability plots for each covariate can be plotted, depending on the grouping level from the random intercept. Thus, for each covariate a plot for each grouping levels is plotted. Furthermore, with the show.se the standard error of probabilities can be shown. In this example, only the plot for one covariate is shown, not for all.

# plot probability curves for each covariate
# grouped by random intercepts
sjp.glmer(fit2,
          type = "ri.pc",
          show.se = TRUE)

unnamed-chunk-8-2

Instead of faceting plots, all grouping levels can be shown in one plot:

# plot probability curves for each covariate
# grouped by random intercepts
sjp.glmer(fit2,
          type = "ri.pc",
          facet.grid = FALSE)

unnamed-chunk-10-2

Outlook

These will be the new features for the next package update. For later updates, I’m also planning to plot interaction terms of (generalized) linear mixed models, similar to the existing function for visualizing interaction terms in linear models.

Visualizing (generalized) linear mixed effects models, part 2 #rstats #lme4

Visualizing (generalized) linear mixed effects models with ggplot #rstats #lme4

In the past week, colleagues of mine and me started using the lme4-package to compute multi level models. This inspired me doing two new functions for visualizing random effects (as retrieved by ranef()) and fixed effects (as retrieved by fixef()) of (generalized) linear mixed effect models.

The upcoming version of my sjPlot package will contain two new functions to plot fitted lmer and glmer models from the lme4 package: sjp.lmer and sjp.glmer (not that surprising function names). Since I’m new to mixed effects models, I would appreciate any suggestions on how to improve the functions, which results are important to report (plot) and so on. Furthermore, I’m not sure whether my approach of computing confident intervals for random effects is the best?

I have used following code to compute confident intervals for the estimates returned by the lme4::ranef() function (bases on this stackoverflow answer):

coev <- as.matrix(lme4::vcov.merMod(fit))
tmp <- as.data.frame(cbind(OR = exp(mydf.ef[,i]),
                     lower.CI = exp(mydf.ef[,i] - (1.96 * sqrt(diag(coev))[i])),
                     upper.CI = exp(mydf.ef[,i] + (1.96 * sqrt(diag(coev))[i]))))

The update to version 1.6 of sjPlot is still in development (feature-freeze, mostly fixes now), however, you can download the latest snapshot from GitHub (see also this post for further information). Now to some examples. First, an example model is fitted and the random effects (default) for each predictor are plotted as “forest plot”:

# fit model
library(lme4)
fit <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
# simple plot
sjp.lmer(fit)

lmer1

Sorting a predictor (i.e. estimates of a facet) is done by specifying the predictor’s name as sort parameter.

sjp.lmer(fit, sort = "Days")

lmer2

Each facet plot can also be plotted as single plot, when facet.grid is set to FALSE. In this case, it is possible to sort the estimates for each plots. See following example from the sjp.glmer function:

library(lme4)
# create binary response
sleepstudy$Reaction.dicho <- sju.dicho(sleepstudy$Reaction, 
                                       dichBy = "md")
# fit model
fit <- glmer(Reaction.dicho ~ Days + (Days | Subject),
             sleepstudy,
             family = binomial("logit"))
sjp.setTheme(theme = "forest")
sjp.glmer(fit, 
          facet.grid = FALSE, 
          sort = "sort.all")

glmer1 glmer2

Plotting the fixed effects is not much spectacular, because we only have one estimate beside intercept here.

sjp.glmer(fit, 
          type = "fe", 
          sort = TRUE)

glmer3

To summarize, you can plot random and fixed effects in the way as shown above. Are there any other or better plot options for visualizing mixed effects models?

Any suggestions are welcome…

Disclaimer: all misspellings belong to Safari’s autocorrect feature!

Visualizing (generalized) linear mixed effects models with ggplot #rstats #lme4

sjPlot 1.6 – major revisions, anyone for beta testing? #rstats

In the last couple of weeks I have rewritten some core parts of my sjPlot-package and also revised the package- and online documentation.

Most notably are the changes that affect theming and appearance of plots and figures. There’s a new function called sjp.setTheme which now sets theme-options for all sjp-functions, which means

  1. you only need to specify theme / appearance option once and no longer need to repeat these parameter for each sjp-function call you make
  2. due to this change, all sjp-functions have much less parameters, making the functions and documentation clearer

Furthermore, due to some problems with connecting / updating to the RPubs server, I decided to upload my online documentation for the package to my own site. You will now find the latest, comprehensive documentation and examples for various functions of the sjPlot package at www.strengejacke.de/sjPlot/. For instance, take a look at customizing plot appearance and see how the new theming feature of the package allows both easier customization of plots as well as better integration of theming packages like ggthemr or ggthemes.

Updating the sjPlot package to CRAN is planned soon, however, I kindly ask you to test the current development snapshot, which is hosted on GitHub. You can easily install the package from there using the devtools-package (devtools::install_github("devel", "sjPlot")). The current snapshot is (very) stable and I appreciate any feedbacks or bug reports (if possible, use the issue tracker from GitHub).

The current change log with all new function, changes and bug fixes can also be found on GitHub.

sjPlot 1.6 – major revisions, anyone for beta testing? #rstats

Visualize pre-post comparison of intervention #rstats

My sjPlot-package was just updated on CRAN, introducing a new function called sjp.emm.int to plot estimated marginal means (least-squares means) of linear models with interaction terms. Or: plotting adjusted means of an ANCOVA.

The idea to this function came up when we wanted to analyze the effect of an intervention (an educational programme on knowledge about mental disorders and associated stigma) between two groups: a “treatmeant” group (city) where a campaign on mental disorders was conducted and another city without this campaign. People from both cities were asked about their attitudes and knowledge about specific mental disorders at t0 before the campaign started in the one city. Some month later (t1), again people from both cities were asked the same questions. The intention was to see a) whether there were differences in knowledge and pro-social attidutes of people towards mental disorders and b) if the compaign successfully reduces stigma and increases knowledge.

To analyse these questions, we used an ANCOVA with knowledge and stigma score as dependent variables, “city” and “time” (t0 versus t1) as predictors and adjusted for covariates like age, sex, education etc. The estimated marginal means (or least-squares means) show you the differences of the dependent variable.

Here’s an example plot, quickly done with the sjp.emm.int function:
sjpemmint

Since the data is not publicly available, I’ve set an an documentation with reproducable examples (though those example do not fit very well…).

The latest development snapshot of my package is available on GitHub.

BTW: You may have noticed that this function is quite similar to the sjp.lm.int function for visually interpreting interaction terms in linear models…

Visualize pre-post comparison of intervention #rstats

sjPlot: New options for creating beautiful tables and documentation #rstats

A new update of my sjPlot package was just released on CRAN. This release focused on improving existing functions and bug fixes again. Especially the table output functions (see my previous blog posts on table output functions here and here) improved a lot. Tables now have more and better possibilities for style customization and knitr integration. A basic introduction into the new features is given in this document.

To make it easier to understand all features, I started to setup comprehensive documentations for all sjPlot functions on strengejacke.de.

sjPlot: New options for creating beautiful tables and documentation #rstats

Beautiful table outputs in R, part 2 #rstats #sjPlot

First of all, I’d like to thank my readers for the lots of feedback on my last post on beautiful outputs in R. I tried to consider all suggestions, updated the existing table-output-functions and added some new ones, which will be described in this post. The updated package is already available on CRAN.

This posting is divided in two major parts:

  1. the new functions are described, and
  2. the new features of all table-output-functions are introduced (including knitr-integration and office-import)

Read on …

Beautiful table outputs in R, part 2 #rstats #sjPlot

No need for SPSS – beautiful output in R #rstats

Note: There’s a second part of this series here.

About one year ago, I seriously started migrating from SPSS to R. Though I’m still using SPSS (because I have to in some situations), I’m quite comfortable and happy with R now and learnt a lot in the past months. But since SPSS is still very wide spread in social sciences, I get asked every now and then, whether I really needed to learn R, because SPSS meets all my needs…

Well, learning R had at least two major benefits for me: 1.) I could improve my statistical knowledge a lot, simply by using formulas, asking why certain R commands do not automatically give the same results like SPSS, reading R resources and papers etc. and 2.) the possibilities of data visualization are way better in R than in SPSS (though SPSS can do well as well…). Of course, there are even many more reasons to use R.

Still, one thing I often miss in R is a beautiful output of simple statistics or maybe even advanced statistics. Not always as plot or graph, but neither as “cryptic” console output. I’d like to have a simple table view, just like the SPSS output window (though the SPSS output is not “beautiful”). That’s why I started writing functions that put the results of certain statistics in HTML tables. These tables can be saved to disk or, even better for quick inspection, shown in a web browser or viewer pane (like in RStudio viewer pane).

All of the following functions are available in my sjPlot-package on CRAN.

Read on …

No need for SPSS – beautiful output in R #rstats

sjPlot 0.9 (data visualization package) now on CRAN #rstats

Since version 0.8, my package for data visualization using ggplot has been released on the Comprehensive R Archive Network (CRAN), which means you can simply install the package with install.packages("sjPlot").

Last week, version 0.9 was released. Binaries are already available for OS X and Windows, and source code for Linux. Further updates will no longer be announced on this blog (except for new functions which may be described in dedicated blog postings), so please use the update function in order make sure you are using the latest package version.

sjPlot 0.9 (data visualization package) now on CRAN #rstats

sjPlot – data visualization for statistics (in social science) #rstats

I’d like to announce the release of version 0.7 of my R package for data visualization and give a small overview of this package (download and installation instructions can be found on the package page, detailed examples on RPubs).

What does this package do?
In short, the functions in this package mostly do two things:

  1. compute basic or advanced statistical analyses
  2. either plot the results as ggplot-diagram or print them as html-table

However, meanwhile the amount of functions has increased, hence you’ll also find some utility functions beside the plotting functions.

How does this package help me?
Basically, this package either helps those users…

  • who have difficulties using and/or understanding all possibilities that ggplot offers to create plots, simply by providing intuitive function parameters, which allow for manipulating the appearance of plots; or
  • who don’t want to set up complex ggplot-object each time from the scratch; or
  • like quick inspections of (basic) statistics via (html-)tables that are shown in the GUI viewer pane or default browser; or
  • want easily create beautiful table outputs that can be imported in office applications.

Furthermore, for advanced users, each functions returns either the prepared ggplot-object (in case of sjp-plotting functions) or the HTML-tables (in case of sjt-table-output functions), which than can be manipulated even further (for instance, for ggplot-objects, you can specify certain parameters that cannot be modified via the sjPlot package or html-tables could be integrated into knitr-documents).

What are all these functions about?
There’s a certain naming convention for the functions:

  • sjc – collection of functions useful for carrying out cluster analyses
  • sji – collection of functions for data import and manipulation
  • sjp – collection plotting functions, the “core” of this package
  • sjt – collection of function that create (HTML) table outputs (instead of ggplot-graphics
  • sju – collection of statistical utility functions

Use cases?

  • You can plot results of Anova, correlations, histograms, box plots, bar plots, (generalized) linear models, likert scales, PCA, proportional tables as bar chart etc.
  • You can create plots to analyse model assumptions (lm, glm), predictor interactions, multiple contigency tables etc.
  • You can create table outputs instead of graphs for most plotting functions
  • With the import and utility functions, you can, for instance, extract beta coefficients of linear models, convert numeric scales into grouped factors, perform statistical tests, import SPSS data sets (and retrieve variable and value labels from the importet data), convert factors to numeric variables (and vice versa)…

Final remarks
At the bottom of my package page you’ll find some examples of selected functions that have been published on this blog before I created the package. Furthermore, the package includes a sample dataset from one of my research projects. Once the package is installed, you can test each function by running the examples. All news and recent changes can be found in the NEWS section of the package help (type ?sjPlot to access the help file inside R).

I tried to write a very comprehensive documentation for each function and their parameters, hopefully this will help you using my package…

Any comments, suggestions etc. are very welcome!

sjPlot – data visualization for statistics (in social science) #rstats

Examples for sjPlotting functions, including correlations and proportional tables with ggplot #rstats

Sometimes people ask me how the examples of my plotting functions I show here can be reproduced without having a SPSS data set (or at least, without having the data set I use because it’s not public yet). So I started to write some examples that run “out of the box” and which I want to present you here. Furthermore, two new plotting functions are introduced: plotting correlations and plotting proportional tables on a percentage scale.

As always, you can find the latest version of my R scripts on my download page.

Following plotting functions will be described in this posting:

  • Plotting proportional tables: sjPlotPropTable.R
  • Plotting correlations: sjPlotCorr.R
  • Plotting frequencies: sjPlotFrequencies.R
  • Plotting grouped frequencies: sjPlotGroupFrequencies.R
  • Plotting linear model: sjPlotLinreg.R
  • Plotting generalized linear models: sjPlotOdds.R

Please note that I have changed function and parameter names in order to have consistent, logical names across all functions!

At the end of this posting you will find some explanation on the different parameters that allow you to fit the plotting results to your needs…

Continue reading this post…

Examples for sjPlotting functions, including correlations and proportional tables with ggplot #rstats