I haven’t used interaction terms in (generalized) linear model quite often yet. However, recently I have had some situations where I tried to compute regression models with interaction terms and was wondering how to interprete the results. Just looking at the estimates won’t help much in such cases.

One approach used by some people is to compute the regressions with subgroups for each category of one interaction term. Let’s say predictor A has a 0/1 coding and predictor B is a continuous scale from 1 to 10, you fit a model for all cases with `A=0` (hence excluding A from the model, no interaction of A and B), and for all cases with `A=1` and compare the estimates of predictor B in each fitted model. This may give you an impression under which condition (i.e. in which subgroup) A has a stronger effect on B (higher interaction), but of course you don’t have the correct estimate values compared to a fitted model that includes both the interaction terms A and B.

Another approach is to calculate the results of `y` by hand, using the formula:
`y = b0 + b1*predictorA + b2*predictorB + b3*predictorA*predictorB`
This is quite complex and time-comsuming, especially if both predictors have several categories. However, this approach gives you a correct impression of the interaction between A and B. I investigated further on this topic and found this nice blogpost on interpreting interactions in regression (and a follow up), which explains very well how to calculate and interprete interaction terms.

Based on this knowledge, I thought of an automatization of calculating and visualizing interaction terms in linear models using R and ggplot.