Tag: sjPlot

Beautiful table-outputs: Summarizing mixed effects models #rstats

The current version 1.8.1 of my sjPlot package has two new functions to easily summarize mixed effects models as HTML-table: sjt.lmer and sjt.glmer. Both are very similar, so I focus on showing how to use sjt.lmer here.

# load required packages
library(sjPlot) # table functions
library(sjmisc) # sample data
library(lme4) # fitting models

Linear mixed models summaries as HTML table

The sjt.lmer function prints summaries of linear mixed models (fitted with the lmer function of the lme4-package) as nicely formatted html-tables. First, some sample models are fitted:

# load sample data
# prepare grouping variables
efc$grp = as.factor(efc$e15relat)
levels(x = efc$grp) <- get_val_labels(efc$e15relat)
efc$care.level <- as.factor(rec(efc$n4pstu, "0=0;1=1;2=2;3:4=4"))
levels(x = efc$care.level) <- c("none", "I", "II", "III")

# data frame for fitted model
mydf <- data.frame(neg_c_7 = as.numeric(efc$neg_c_7),
                   sex = as.factor(efc$c161sex),
                   c12hour = as.numeric(efc$c12hour),
                   barthel = as.numeric(efc$barthtot),
                   education = as.factor(efc$c172code),
                   grp = efc$grp,
                   carelevel = efc$care.level)

# fit sample models
fit1 <- lmer(neg_c_7 ~ sex + c12hour + barthel + (1|grp), data = mydf)
fit2 <- lmer(neg_c_7 ~ sex + c12hour + education + barthel + (1|grp), data = mydf)
fit3 <- lmer(neg_c_7 ~ sex + c12hour + education + barthel +
              (1|grp) +
              (1|carelevel), data = mydf)

The simplest way of producing the table output is by passing the fitted models as parameter. By default, estimates (B), confidence intervals (CI) and p-values (p) are reported. The models are named Model 1 and Model 2. The resulting table is divided into three parts:

  • Fixed parts – the model’s fixed effects coefficients, including confidence intervals and p-values.
  • Random parts – the model’s group count (amount of random intercepts) as well as the Intra-Class-Correlation-Coefficient ICC.
  • Summary – Observations, AIC etc.

Continue reading “Beautiful table-outputs: Summarizing mixed effects models #rstats”

sjmisc – package for working with (labelled) data #rstats

The sjmisc-package

My last posting was about reading and writing data between R and other statistical packages like SPSS, Stata or SAS. After that, I decided to bundle all functions that are not directly related to plotting or printing tables, into a new package called sjmisc.

Basically, this package covers three domains of functionality:

  • reading and writing data between other statistical packages (like SPSS) and R, based on the haven and foreign packages; hence, sjmisc also includes function to work with labelled data.
  • frequently used statistical tests, or at least convenient wrappers for such test functions
  • frequently applied recoding and variable conversion tasks

In this posting, I want to give a quick and short introduction into the labeling features.

Continue reading “sjmisc – package for working with (labelled) data #rstats”

Reading from and writing to SPSS, SAS and STATA with R #rstats #sjPlot

On CRAN now

My sjPlot-package was updated on CRAN (binaries will be available soon, I guess). This update contains, besides many small improvements and fixes, two major features:

  1. First, new features to print table summaries of linear models and generalized linear models (for sjt.glm, the same new features were added as to sjt.lm – however, the manual page is not finished yet). I have introduced these features in a former posting.
  2. Second, functions for reading data from and writing to other statistical packages like SPSS, SAS or STATA have been revamped or new features have been added. Furthermore, there are improved getters and setters to extract and set variable and value labels. A short introduction is available online.

Continue reading “Reading from and writing to SPSS, SAS and STATA with R #rstats #sjPlot”

Beautiful tables for linear model summaries #rstats

Beautiful HTML tables of linear models

In this blog post I’d like to show some (old and) new features of the sjt.lm function from my sjPlot-package. These functions are currently only implemented in the development snapshot on GitHub. A package update is planned to be submitted soon to CRAN.

There are two new major features I added to this function: Comparing models with different predictors (e.g. stepwise regression) and automatic grouping of categorical predictors. There are examples below that demonstrate these features.

The sjt.lm function prints results and summaries of linear models as HTML-table. These tables can be viewed in the RStudio Viewer pane, web browser or easily exported to office applications. See also my former posts on the table printing functions of my package here and here.

Please note: The following tables may look a bit cluttered – this is because I just pasted the HTML-code created by knitr into this blog post, so style sheets may interfere. The original online-manual for this function can be found here.

Continue reading “Beautiful tables for linear model summaries #rstats”

sjPlot package and related online manuals updated #rstats # ggplot

My sjPlot package for data visualization has just been updated on CRAN. I’ve added some features to existing function, which I want to introduce here.

Plotting linear models

So far, plotting model assumptions of linear models or plotting slopes for each estimate of linear models were spread over several functions. Now, these plot types have been integrated into the sjp.lm function, where you can select the plot type with the type parameter. Furthermore, plotting standardized coefficients now also plot the related confidence intervals.

Detailed examples can be found here:

Plotting generalized linear models

Beside odds ratios, you now can also plot the predicted probabilities of the outcome for each predictor of generalized linear models. In case you have continuous variables, these kind of plots may be more intuitive than an odds ratio value.

Detailed examples can be found here:

Plotting (generalized) linear mixed effects models

The plotting function for creating plots of (generalized) linear mixed effects models (sjp.lmer and sjp.glmer) also got new plot types over the course of the last weeks.

For sjp.lmer, we have

  • re (default) for estimates of random effects
  • fe for estimates of fixed effects
  • fe.std for standardized estimates of fixed effects
  • fe.cor for correlation matrix of fixed effects
  • re.qq for a QQ-plot of random effects (random effects quantiles against standard normal quantiles)
  • fe.ri for fixed effects slopes depending on the random intercept.

and for sjp.glmer, we have

  • re (default) for odds ratios of random effects
  • fe for odds ratios of fixed effects
  • fe.cor for correlation matrix of fixed effects
  • re.qq for a QQ-plot of random effects (random effects quantiles against standard normal quantiles)
  • fe.pc or fe.prob to plot probability curves (predicted probabilities) of all fixed effects coefficients. Use facet.grid to decide whether to plot each coefficient as separate plot or as integrated faceted plot.
  • ri.pc or ri.prob to plot probability curves (predicted probabilities) of random intercept variances for all fixed effects coefficients. Use facet.grid to decide whether to plot each coefficient as separate plot or as integrated faceted plot.

Detailed examples can be found here:
www.strengejacke.de/sjPlot/sjp.lmer and www.strengejacke.de/sjPlot/sjp.glmer

Plotting interaction terms of (generalized) linear (mixed effects) models

Another function, where new features were added, is sjp.int (formerly known as sjp.lm.int). This function is now kind of generic and can plot interactions of

  • linar models (lm)
  • generalized linar models (glm)
  • linar mixed effects models (lme4::lmer)
  • generalized linar mixed effects models (lme4::glmer)

For linear models (both normal and mixed effects), slopes of interaction terms are plotted. For generalized linear models, the predicted probabilities of the outcome towards the interaction terms is plotted.

Detailed examples can be found here:

Plotting Likert scales

Finally, a comprehensive documentation for the sjp.likert function is finsihed, which can be found here:

sjPlot 1.6 – major revisions, anyone for beta testing? #rstats

In the last couple of weeks I have rewritten some core parts of my sjPlot-package and also revised the package- and online documentation.

Most notably are the changes that affect theming and appearance of plots and figures. There’s a new function called sjp.setTheme which now sets theme-options for all sjp-functions, which means

  1. you only need to specify theme / appearance option once and no longer need to repeat these parameter for each sjp-function call you make
  2. due to this change, all sjp-functions have much less parameters, making the functions and documentation clearer

Furthermore, due to some problems with connecting / updating to the RPubs server, I decided to upload my online documentation for the package to my own site. You will now find the latest, comprehensive documentation and examples for various functions of the sjPlot package at www.strengejacke.de/sjPlot/. For instance, take a look at customizing plot appearance and see how the new theming feature of the package allows both easier customization of plots as well as better integration of theming packages like ggthemr or ggthemes.

Updating the sjPlot package to CRAN is planned soon, however, I kindly ask you to test the current development snapshot, which is hosted on GitHub. You can easily install the package from there using the devtools-package (devtools::install_github("devel", "sjPlot")). The current snapshot is (very) stable and I appreciate any feedbacks or bug reports (if possible, use the issue tracker from GitHub).

The current change log with all new function, changes and bug fixes can also be found on GitHub.

Visualize pre-post comparison of intervention #rstats

My sjPlot-package was just updated on CRAN, introducing a new function called sjp.emm.int to plot estimated marginal means (least-squares means) of linear models with interaction terms. Or: plotting adjusted means of an ANCOVA.

The idea to this function came up when we wanted to analyze the effect of an intervention (an educational programme on knowledge about mental disorders and associated stigma) between two groups: a “treatmeant” group (city) where a campaign on mental disorders was conducted and another city without this campaign. People from both cities were asked about their attitudes and knowledge about specific mental disorders at t0 before the campaign started in the one city. Some month later (t1), again people from both cities were asked the same questions. The intention was to see a) whether there were differences in knowledge and pro-social attidutes of people towards mental disorders and b) if the compaign successfully reduces stigma and increases knowledge.

To analyse these questions, we used an ANCOVA with knowledge and stigma score as dependent variables, “city” and “time” (t0 versus t1) as predictors and adjusted for covariates like age, sex, education etc. The estimated marginal means (or least-squares means) show you the differences of the dependent variable.

Here’s an example plot, quickly done with the sjp.emm.int function:

Since the data is not publicly available, I’ve set an an documentation with reproducable examples (though those example do not fit very well…).

The latest development snapshot of my package is available on GitHub.

BTW: You may have noticed that this function is quite similar to the sjp.lm.int function for visually interpreting interaction terms in linear models…

sjPlot: New options for creating beautiful tables and documentation #rstats

A new update of my sjPlot package was just released on CRAN. This release focused on improving existing functions and bug fixes again. Especially the table output functions (see my previous blog posts on table output functions here and here) improved a lot. Tables now have more and better possibilities for style customization and knitr integration. A basic introduction into the new features is given in this document.

To make it easier to understand all features, I started to setup comprehensive documentations for all sjPlot functions on strengejacke.de.

sjPlot 1.3 available #rstats #sjPlot

I just submitted my package update (version 1.3) to CRAN. The download is already available (currently source, binaries follow). While the last two updates included new functions for table outputs (see here and here for details on these functions), the current update mostly provides small helper functions. The focus of this update was to improve existing functions and make their handling easier and more comfortable.

Automatic label detection

One major feature is that many functions now automatically detect variables and value labels, if possible. For instance, if you have imported an SPSS dataset (e.g. with the function sji.SPSS), value labels are automatically attached to all variables of the data frame. With the autoAttachVarLabels parameter set to TRUE, even variable labels will be attached to the data frame after importing the SPSS data. These labels are automatically detected by most functions of the package now. But this does not only apply to importet SPSS-data. If you have factors with specified factor levels, these will also automatically be used as value labels. Furthermore, you can manually attach value and variable labels using the new function sji.setVariableLabels and sji.setValueLabels.

Continue reading “sjPlot 1.3 available #rstats #sjPlot”